Building a Change Data Capture Pipeline with AWS and Kafka

  • 28th Apr 2024
  • 2 min read
  • Last updated on 28th Apr 2024


In this post, I will try to write a detailed step-by-step guide on how to build and configure a change data capture pipeline that captures all changes in a database and writes them into an audit log table in a useful format.


Please note that this post is a work in progress, and some sections may be incomplete or require further refinement. I will continue working on it until I feel it is done, and if it currently doesn’t have the information you are looking for - be sure to come back later.

Use Case

The use case for this setup is obviously an auditing system that keeps track of all changes in a database. Where could this be useful? One option is using it for security reasons, to track user activity. Another or for activity logging with the possibility of reviewing changes in some data entity. Probably, it could even be helpful for debugging purposes.



Note that this post is not just an exercise but comes from personal working experience, so some architectural decisions were preconditions that couldn’t be changed. There are many ways such a pipeline could be implemented, but I will only be talking about what I had experience with.

The pipeline in this post is built in AWS using the following services:

  • Aurora - a cloud PostgreSQL, the primary data source and destination
  • Database Migration Service, DMS - a service that captures and outputs the changes in Aurora
  • Managed Streaming for Apache Kafka, MSK with MSK Connect - a queue (or a stream-processing framework, if you will) used to process the stream of data changes. Kafka Connect (MSK Connect in AWS-land) is a service that will put the data into its final destination.
  • Kafka Streams App - a minimal app that transforms events so they are easy to use later. It will be built using Spring Boot with Spring Kafka and run in an Elastic Container Service (ECS) cluster.

The Guide

Step 1: Set up Aurora

Step 2: Set up MSK Cluster

Step 3: Configure DMS Task

Step 4: Create MSK Connector

Step 5: Build a Kafka Streams App

Step 6: Test the Pipeline